Functions not Constant on Fractal Quasi-Arcs of Critical Points
نویسندگان
چکیده
منابع مشابه
Distribution of Points on Arcs
Let z1, . . . , zN be complex numbers situated on the unit circle |z| = 1, and write S := z1 + · · · + zN . Generalizing a well-known lemma by Freiman, we prove the following. (i) Suppose that any open arc of length φ ∈ (0, π] of the unit circle contains at most n of the numbers z1, . . . , zN . Then |S| ≤ 2n−N + 2(N − n) cos(φ/2). (ii) Suppose that any open arc of length π of the unit circle c...
متن کاملCritical Points of Functions on Singular Spaces
We compare and contrast various notions of the “critical locus” of a complex analytic function on a singular space. After choosing a topological variant as our primary notion of the critical locus, we justify our choice by generalizing Lê and Saito’s result that constant Milnor number implies that Thom’s af condition is satisfied.
متن کاملExistence of Quasi-arcs
We show that doubling, linearly connected metric spaces are quasiarc connected. This gives a new and short proof of a theorem of Tukia.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1989
ISSN: 0002-9939
DOI: 10.2307/2048819